
Deadlock Page 1 of 15

DEADLOCKS

A set of processes is deadlocked if each process in the set is waiting for an event that only

another process in the set can cause. If process A is waiting for a resource that process B

has, and process B is waiting for a resource that process A has, then both the processes are

deadlocked.

 Resources are of two types

1. Preemptable

2. Non-preemptable

A preemptable resource can be taken away from the process that owns it.

A non-preemptable resource can not be taken from its current owner.

Deadlocks generally occur in non-preemptable resources. Deadlocks that involve

preemptable resources can be avoided on resolved by the reallocation of resources. The

sequence in which resources are required is:

i. Requested the resource

ii. Use the resource

iii. Release the resource

If the resource is not available, when a process requested for it, then the process

will start waiting, so that wherever that resource becomes available, the requesting process

can use it. Resource can be hardware device (type drive) or source information (a record

in a file).

Deadlock Characterization
 A deadlock can occur if following four conditions hold simultaneously.

i) Mutual Exclusion Only one process should be using the resource and if another

process requests that resource, then the requesting process should be delayed until

the resource is released.

ii) Hold and Wait There should be a process that is holding a resource and is waiting

for one or more resources that are in use by other process.

iii) Non-Preemption Resources can not be preempted. A process will release the

resource only when it has completed its task.

iv) Circular Wait There should a circular chain of at least two or more process where

each of them is waiting for a resource held by the next process in the chain, e.g. a

set { P0 , Pl, ... , Pn } of waiting processes must exist such that P0 is waiting for a

Deadlock Page 2 of 15

resource held by P1, P1 is waiting for a resource held by P2, ... , Pn-1 is waiting for a

resource held by Pn and Pn is waiting for a resource held by P0.

A deadlock is not possible, if any of these four conditions described earlier are

absent. So all the four conditions must hold simultaneously for a deadlock to occur.

Deadlock Prevention

For a deadlock to occur, 4 necessary conditions must hold. If we try to overcome

any of the condition out of four, we can prevent the occurrence of a deadlock.

i) Mutual Exclusion

If a resource is not assigned separately to a process, then we will not have

deadlocks, but there are some resources that cannot be assigned to more than once

process simultaneously. So, to avoid assigning the resources to the process unless

that resource is not very necessary and only a few processes should request for such

kind of resources.

ii) Hold and Wait

We may overcome on Hold and wait problem if a process request for all the

resources that it needs before starting execution. If all the requested resources are

available, then the process will be executed otherwise process will wait for those

resources to become available.

Although, instead of efficient, this way is time consuming and wastes

resources but a deadlock can be prevented like this.

iii) Non-Preemption

If a process that is holding some resources requests another resource that cannot be

allocated to it then it will release its resources for use by other processes. Other

processes that could have waited for those resources will use these preempted

resources and after completion returns them to the system. Now the process that

sacrificed its resources for other processes will restart again and will have all the

resources available.

 This technique can be applied to the resources like memory etc but cannot

be used for resources like Printer or Tape drives.

Using the

Resource

Requesting the

Resource A

R1

R2

B

Deadlock Page 3 of 15

iv) Circular Wait

One way of avoiding the circular wait condition is that one process can use only

resource at any moment. It if needs another, then it should release the first resource,

only then it can use the other resource. This technique cannot be used if we want

to print a huge file from tape to printer.

 Another technique to avoid circular wait is if we provide a global number

for the resources i.e.

1. Printer

2. Plotter

3. Tape Drive

4. CD-ROM Drive

And process can request the resources only in numerical order e.g. a process can

first request the printer and then the plotter, and it cannot request first a plotter then a

printer.

We will never have cycles in this case e.g. “i” and “j” are two resources with

different numbers, Process A requested resource “i” and process B requested resource “j”.

Now dead lock can occur if process A requests resource “j” and process B requests resource

“i”.

As both resources “i” and “j” have different number, so if “i” > “j” then A

will not be allowed to request “j” or if “i” < “j” then B ill not be allowed to request

“i”. So deadlock will not occur.

Deadlock Avoidance

 In deadlock prevention we try to overcome any of the 4 conditions that are

responsible for the occurrence of deadlock. Deadlocks can be prevented by this way but

the device utilization is reduced in this method.

 Another method for avoiding deadlocks is to get information about the resources

that how they are requested. If we know the sequence of resource requests and releases,

then we can decide that for which resource the process should wait. So, whenever, a

process requests for a resource then Operating System checks the available resources and

the resources allocated to other processes. This checking enables the Operating System to

A

i

B

j

Holding the Resource

A

i

B

j

Requesting the Resource

Deadlock Page 4 of 15

decide whether the request can be satisfied or put to wait in order to avoid the deadlocks,

possible in future.

 Different algorithms can be used that avoid deadlocks to occur. A simple method

is that all the processes declare the maximum number of resources that it may need during

execution. If we have the information about all the processes that which can need which

resource then we can develop an algorithm that ensures that the system will never enter

into deadlock state. The deadlock avoidance algorithm checks the resource allocation state

and ensure that there can never be a circular wait-condition.

 A state is safe if the system can allocate resources to each process (up to its

maximum) through same way and still avoid a deadlock, so safe state is not a deadlock

state.

 Similarly, when the Operating System is unable to prevent the process from

requesting resources then a deadlock occurs and is in unsafe state. Although not all-unsafe

state lead to deadlocks but chances are that the unsafe state will result a deadlock to occur.

 A system has 12 Tape drives and three processes P1, P2 and P3. Maximum tape

drive needed by P1 is 10, 4 for P2 and 9 to P3. At time T0, process P1 is holding 5, P2 is

holding 2 and P3 is possessing 2 Tape drives as shown in the following table.

 Maximum Needs Current Needs

P1 10 5

P2 4 2

P3 9 2

 The sequence <P2, P1, P3> is satisfying the safety condition so the state of the

system is safe. Out of 12 tape drives 3 are free as 5 are in use by P1, 2 are in use by P2 and

2 are in use by P3. Process P2 can use 2 more tape drives although it is already using 2 tape

drives and will be allotted the 2 tape drives as 3 are free. After use all the tape drives will

be returned and the free tape drives will now be 5, that can be used by P1 and then by P3.

So at all the time of allocating the tape drives to processes our system remains in a safe

state.

 A system very easily can go from a safe state to unsafe state if resources are not

allocated carefully. At time T1, process P3 requests 1 tape drive although it is already using

2. As free tape drive are 3 so the request of P3 is fulfilled and 1 tape drive is allocated to

P3. The moment system deviates from its defined safety sequence of <P2, P1, P3>, its state

is changed from safe to unsafe state. At this time, if process P2 is allocated all its tape

drives and when it returns them then the system will have only 4 tape drives available.

Now process P1 requests for 5 tape drives and only 4 are free so process P1 starts waiting.

Similarly process P3 request 6 tape drives but only 4 are available. So process P3 also

starts waiting, both will be waiting forever as the deadlock has occurred.

 The problem in above example started by granting the request of 1 tape drive to

process P3. Had P3 been put to wait for the request of 1 tape drive until either of the other

processes had finished and released their resources, then we could have avoided the

deadlock.

Deadlock Page 5 of 15

Banker’s Algorithm (Deadlock Avoidance)

Banker’s algorithm is used for deadlock avoidance and determines the safe state for a given

set of processes. When a new process enters the system, it declares the maximum number

of instances of each resource type that it may need during execution. This number should

not exceed the total number of resources in the system. When a process requests for

resources, the system must determine whether the allocation of these resources will leave

the system in a safe state or not. If it will leave the system in a safe state, the resources are

allocated; otherwise, the process waits until some other process releases enough resources.

Data structures required for implementation of banker's algorithm are:

i) Resource Allocation matrix

ii) Maximum resource request matrix

iii) Available resource vector

iv) Needed resource matrix

In order to understand banker’s algorithm, consider a system with 5 Processes <P1, P2, P3,

P4, P5> and 3 Resource types <R1, R2, R3>. Resource R1 has 10 instances, Resource R2

has 5 instances and Resource R3 has 7 instances. The following snapshot of the system is

given below:

 Resource

Allocation

Matrix

 Maximum

Resource

Request Matrix

 R1 R2 R3 R1 R2 R3

P1 0 1 0 P1 7 5 3

P2 2 0 0 P2 3 2 2

P3 3 0 2 P3 9 0 2

P4 2 1 1 P4 2 2 2

P5 0 0 2 P5 4 3 3

i) Find Available Resource Vector

ii) Find the Need Matrix

iii) Find whether the system is in SAFE STATE or not

iv) If the system is in SAFE STATE, find the SAFETY SEQUENCE

Solution:

i) Available Resource Vector = Total - Allocation

R1 = 10 – 7 >> 3

R2 = 5 – 2 >> 2

R3 = 7 – 5 >> 2

Available

Resource

Vector

R1 R2 R3

3 3 2

Deadlock Page 6 of 15

ii) Need Matrix = Maximum - Allocation

 Need Matrix

(Max – Allocation)

 R1 R2 R3

P1 7 4 3

P2 1 2 2

P3 6 0 0

P4 0 1 1

P5 4 3 1

iii) To find whether the system is in SAFE STATE or not, we’ll have to apply Safety

Algorithm, e.g.

if (need of processi ≤ available resource vector)

{ execute processi

 new available = available + allocation

}

else

{ do not execute processi

 move on to next processi+1

}

P1 if [need P1 ≤ available] (False)

[7 4 3 ≤ 3 3 2]

P2 if [need P2 ≤ available] (True)

 [1 2 2 ≤ 3 3 2]

 then

 new available = available + allocation

 = 3 3 2 + 2 0 0

 = 5 3 2

New Available

Resource

Vector

R1 R2 R3

5 3 2

P3 if [need P3 ≤ available] (False)

[6 0 0 ≤ 5 3 2]

P4 if [need P4 ≤ available] (True)

 [0 1 1 ≤ 5 3 2]

 then

Deadlock Page 7 of 15

 new available = available + allocation

 = 5 3 2 + 2 1 1

 = 7 4 3

New Available

Resource

Vector

R1 R2 R3

7 4 3

P5 if [need P5 ≤ available] (True)

 [4 3 1 ≤ 7 4 3]

 then

 new available = available + allocation

 = 7 4 3 + 0 0 2

 = 7 4 5

New Available

Resource

Vector

R1 R2 R3

7 4 5

P1 if [need P1 ≤ available] (True)

 [7 4 3 ≤ 7 4 5]

 then

 new available = available + allocation

 = 7 4 5 + 0 1 0

 = 7 5 5

New Available

Resource

Vector

R1 R2 R3

7 5 5

P3 if [need P3 ≤ available] (True)

 [6 0 0 ≤ 7 5 5]

 then

 new available = available + allocation

 = 7 5 5 + 3 0 2

 = 10 5 7

New Available

Resource

Vector

R1 R2 R3

10 5 7

Deadlock Page 8 of 15

As all the processes executed successfully so the system is in a SAFE STATE.

iv) SAFETY SEQUENCE identified during execution of the processes is:

SAFETY SEQUENCE < P2, P4, P5, P1, P3 >

Java based Banker’s Algorithm Implementation: SAMPLE OUTPUT

Enter no. of processes and resources: 5 3

Enter allocation matrix:

0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Enter max matrix:

7 5 3

3 2 2

9 0 2

2 2 2

1 3 3

Enter available matrix:

3 3 2

SAFETY SEQUENCE - <P2, P4, P5, P1, P3>

All processes allocated safely

Java based Banker’s Algorithm Implementation: SAMPLE OUTPUT

Enter no. of processes and resources: 3 1

Enter allocation matrix:

5

2

2

Enter max matrix:

10

4

9

Enter available matrix:

3

SAFETY SEQUENCE - <P2, P1, P3>

All processes allocated safely

Deadlock Page 9 of 15

Deadlock Detection

 In deadlock detection we do not try to prevent deadlocks from occurring, so when

a deadlock occurs, the system detects that the deadlock has occurred and takes action to

recover from the Deadlock State. There are different ways through which we detect the

deadlocks in the system and then try to recover the system from Deadlock State.

 Different techniques can be used for detecting a deadlock, for example when we

have a single resource of each resource type, then deadlock detection method will be

different and when we have multiple resources of each resource type the deadlock detection

method will be different. So, the basic function in deadlock detection is that check the

system to find whether a deadlock has occurred or not. If the deadlock is detected then we

use the techniques to recover from the detected deadlock.

Deadlock Detection in

Single Resource of Each Resource Type

 In this case we detect the deadlock from the system that has only one resource of

each resource type, i.e. one tape drive, one printer one plotter etc.

 A resource graph is constructed in order to detect the deadlocks from a system

having single resource of each resource type. If the graph contains one or more cycles it

means that a deadlock exists. Any process or processes that are the part of the cycle are

deadlock.

 A system has 7 processes A – G, and 6 resources R – W. Resource ownership for

this system is

1. Process A holds R and wants S.

2. Process B holds nothing and wants T.

3. Process C holds nothing but wants S.

4. Process D holds U and also wants T & S.

5. Process E holds T and wants V.

6. Process F holds W and wants S.

7. Process G holds V and requests U.

On drawing the resource graph for these processes and resources it become clear

that a cycle exits in this graph. So, Process D, E and G are deadlocked. Process A, B, C

& F are not deadlocked. Resource S can be allocated to Process A, C and F and after

completion it will be returned so that other processes can use it.

To implement this idea in actual systems we use some algorithms for the detection

of deadlocks. One ways is that each node is taken in its turn as a root and perform a depth-

first search on it. If it comes back to a node that is already checked, it means that a cycle

exists, i.e. like this we have detected the deadlocked, same process is repeated for all nodes

and if there is no cycle then it means there is no deadlock.

L = [R, A]

L = [B, T, E, V, G, U, D, T]

Deadlock Page 10 of 15

Deadlock Detection in

Multiple Resources of Each Resource Type

 For detecting a deadlock when we have multiple resources of each resource type,

there is a matrix based algorithm.

Let there are n processes i.e. P1 through Pn. Let the number of resource class be

“m”, with E1 resources of class 1, E2 resources of class 2 and generally Ei resources of

class “i” (1 ≤ i ≤ m).

E is the existing resource vector. It gives the total number of instances of each

resource in existence i.e. if class 1 is Tape drives then E1=2 means that the system has 2

Tape drives.

At any instant, some of the resources are assigned and are not available.

Let A be the available resource vector, with Ai giving the number of instances of

resource “i” that are currently available i.e. unassigned. If both of the Tape drives are

assigned than A1 will be 0.

Now we need two arrays, C, the current allocation matrix, and R, the request matrix.

The “i”th row of C tells how many instances of each resource class Pi currently holds. So,

Cij is the number of instances of resource “j” that are held by process “i”. Similarly, Rij is

the number of instances of resource “j” that Pi wants.

D

U

G

T E

V

Cycle extracted from Resource Graph

Resource Graph

R A

S C

F

W

D

U

G

T E

V

B

Deadlock Page 11 of 15

So, the 4 data structures are

i)

Resources in Existence

(E1, E2, E3, …..Em)

ii)

Resources Available

(A1, A2, A3, …..Am)

iii)

Current Allocation Matrix

C11 C12 C13 ….. C1m

C21 C22 C23 ….. C2m

. . . .

. . . .

. . . .

Cn1 Cn2 Cn3 ….. Cnm

Row “n” is the current allocation to Process n.

iv)

Request Matrix

R11 R12 R13 ….. R1m

R21 R22 R23 ….. R2m

. . . .

. . . .

. . . .

Rn1 Rn2 Rn3 ….. Rnm

Row “2” is what Process 2 needs.

So, these 4 data structures are needed for detecting a deadlock when we have multiple

resources of each resource type.

 Every resource that we have will either be allocated or will be available. So,

 m

Σ Cij + Aj = Ej
 i=1

 i.e. if we add all the instances of resource “j” that have been allocated and all its

instances that are available, then the result will be the number of instance of that resource

class.

 The deadlock detection algorithm with multiple resource of each resource type is

based on comparing the vectors.

 Each process is initially unmarked and as the algorithm progresses, processes will

be marked indicating that they are able to complete, so, they are not deadlocked. When the

algorithm terminates, any unmarked processes are known to be deadlocked.

Deadlock Page 12 of 15

The deadlock detection algorithm is

1. Look for an unmarked process, Pi for which the “i”th row of R is less than A.

2. If such a process is found, add the “I”th row of C to A, mark the process and go

back to step 1

3. If no such process exists, the algorithm terminates.

When algorithm finishes, all the unmarked processes, if any are deadlocked.

Example

 We have 3 Processes and 4 Resource classes which are labeled as

1. Tape drives

2. Plotters

3. Printers

4. CD-ROM

Process 1 has 1 Printer

Process 2 has 2 Tape drives and 1 CD-ROM

Process 3 has 1 Plotter and 2 Printers

 Now, each process needs additional resource that is shown in matrix R.

Resources in Existence

E = (4 2 3 1)

Tape drives Plotters Printers CD-ROM

Resources Available

A = (2 1 0 0)

Tape drives Plotters Printers CD-ROM

Current Allocation Matrix

0 0 1 0

2 0 0 1

0 1 2 0

Request Matrix

2 0 0 1

1 0 1 0

2 1 0 0

C =

R =

Deadlock Page 13 of 15

 To run the deadlock detection algorithm, we look for a process whose resource

request can be satisfied.

 The request of 1st Process can not be satisfied because there is no CD-ROM

available. Similarly, the request of 2nd process can also not be satisfied because there is no

Printer free, but the request of 3rd Process can be satisfied, So, Process 3 runs successfully.

 When Process 3 terminates, it returns all its resources. So, resources available now

are

Resources Available

A = (2 2 2 0)

Tape drives Plotters Printers CD-ROM

 Now, Process 2 can also run and after its completion the resources available are

Resources Available

A = (4 2 2 1)

Tape drives Plotters Printers CD-ROM

and Process 1 can also run now. So, there is no deadlock in the system.

 By making a minor change in the above defined situation and that is when Process

2 needs a CD-ROM and 2 Tape drives and 1 Plotter. i.e. the situation now is

Resources in Existence

E = (4 2 3 1)

Tape drives Plotters Printers CD-ROM

Resources Available

A = (2 1 0 0)

Tape drives Plotters Printers CD-ROM

Current Allocation Matrix

0 0 1 0

2 0 0 1

0 1 2 0

C =

Deadlock Page 14 of 15

Resources requested by Process 2

Resources requested by Process 2

R =

Resources requested by Process 1

Request Matrix

2 0 0 1

2 1 0 1

2 1 0 0

 Now, when Process 3 completes first and returns its resources, then available

resources becomes

Resources Available

A = (2 2 2 0)

Tape drives Plotters Printers CD-ROM

Whereas the request matrix of Process 2 is

Request Matrix

2 0 0 1

2 1 0 1

2 1 0 0

and request matrix of Process 1 is

Request Matrix

2 0 0 1

2 1 0 1

2 1 0 0

The request of both the processes i.e. Process 1 and Process 2 can not be completed

within the available resources. So, a deadlock is obvious in Process 1 and 2.

Recovery from Deadlock
 When the system has detected the deadlock then steps should be taken in order to

recover the system from the Deadlock State. One way is to inform the operator that the

deadlock has occurred, so that he can terminate the processes or process that are involved

in the deadlock. So the operator can recover the system from the Deadlock State manually.

R =

R =

Deadlock Page 15 of 15

 There are two ways through which a deadlock can be broken. One is the process

termination and the other is resource preemption.

Process Termination

One way of breaking a deadlock is to terminate one or all the processes that are

deadlocked. The following methods are used for this purpose

The method of terminating all the deadlocked processes will break the deadlock

state of the system but this way will be wastage of time and resources as the processes were

in execution for a long time and when they are terminated before completion, next time the

same process will take more time to execute.

 A better way in this situation is to terminate one process at a time until a

deadlock cycle is eliminated. After terminating one process, the deadlock detection

algorithm is used to detect whether the remaining processes are in deadlock or not. Process

selected for termination should be the one that causes minimum ill effects. There are many

factors on which a process should be selected for termination

i) The priority of the process.

ii) Time that a process has taken for computation

iii) Types and number of resources that a process has used and whether the resources

are preempted.

iv) How many more resources are needed to complete the process.

v) How many processes will be terminated.

vi) The process is interactive or batch.

Resource Preemption

The second way of breaking the deadlock is to preempt some resources and give

them to other processes till the deadlock is broken. The following three issues are involved

in the resource preemption of deadlock process.

Process Selection The issues involved in this case are the number of resources, a deadlock

process is holding and the amount of time a deadlock process has consumed during its

execution.

Rollback If possible then after the preemption of resources from a process, that process

should be rollback to a safe state so that later we can start that process from that state.

Starvation We ensure that the process selected for the preemption of resources will only

be for a few time i.e. not always the same process will be selected.

